Complexity analysis of interior point algorithms for non-Lipschitz and nonconvex minimization

نویسندگان

  • Wei Bian
  • Xiaojun Chen
  • Yinyu Ye
چکیده

We propose a first order interior point algorithm for a class of nonLipschitz and nonconvex minimization problems with box constraints, which arise from applications in variable selection and regularized optimization. The objective functions of these problems are continuously differentiable typically at interior points of the feasible set. Our first order algorithm is easy to implement and the objective function value is reduced monotonically along the iteration points. We show that the worst-case iteration complexity for finding an ε scaled first order stationary point is O(ε−2). Furthermore, we develop a second order interior point algorithm using the Hessian matrix, and solve a quadratic program with a ball constraint at each iteration. Although the second order interior point algorithm costs more computational time than that of the first order algorithm in each iteration, its worst-case iteration complexity for finding an ε scaled second order stationary point is reduced to O(ε−3/2). Note that an ε scaled second order stationary point must also be an ε scaled first order stationary point.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smoothing Sqp Algorithm for Non-lipschitz Optimization with Complexity Analysis

Abstract. In this paper, we propose a smoothing sequential quadratic programming (SSQP) algorithm for solving a class of nonsmooth nonconvex, perhaps even non-Lipschitz minimization problems, which has wide applications in statistics and sparse reconstruction. At each step, the SSQP algorithm solves a strongly convex quadratic minimization problem with a diagonal Hessian matrix, which has a sim...

متن کامل

An Augmented Lagrangian Method for Non-Lipschitz Nonconvex Programming

We consider a class of constrained optimization problems where the objective function is a sum of a smooth function and a nonconvex non-Lipschitz function. Many problems in sparse portfolio selection, edge preserving image restoration and signal processing can be modelled in this form. First we propose the concept of the Karush-Kuhn-Tucker (KKT) stationary condition for the non-Lipschitz proble...

متن کامل

An improved infeasible‎ ‎interior-point method for symmetric cone linear complementarity‎ ‎problem

We present an improved version of a full Nesterov-Todd step infeasible interior-point method for linear complementarityproblem over symmetric cone (Bull. Iranian Math. Soc., 40(3), 541-564, (2014)). In the earlier version, each iteration consisted of one so-called feasibility step and a few -at most three - centering steps. Here, each iteration consists of only a feasibility step. Thus, the new...

متن کامل

A Full-NT Step Infeasible Interior-Point Algorithm for Mixed Symmetric Cone LCPs

An infeasible interior-point algorithm for mixed symmetric cone linear complementarity problems is proposed. Using the machinery of Euclidean Jordan algebras and Nesterov-Todd search direction, the convergence analysis of the algorithm is shown and proved. Moreover, we obtain a polynomial time complexity bound which matches the currently best known iteration bound for infeasible interior-point ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 149  شماره 

صفحات  -

تاریخ انتشار 2015